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Abstract
Large-order asymptotics in dynamic field theories constructed from Langevin
equations with the aid of the Martin–Siggia–Rose formalism are considered.
The existence of instantons in dynamic models is discussed. Specific features of
the instanton approach in the dynamic models are shown in the examples of the
standard dynamic φ4-based models from A to H in the common classification
and Kraichnan model of passive scalar advection in turbulent flow. The
results obtained demonstrate that the series of the perturbation expansions
for the dynamic φ4-related models is—as usual—asymptotic with zero radius
of convergence. Main parameters of large-order asymptotes are determined.
In the Kraichnan model, however, the situation is different. Our results show
that the series here has a finite radius of convergence. This radius as well as
the character of the singularity of the functions investigated was determined.

PACS numbers: 47.10.+g, 47.27.Gs, 05.40.+j

1. Introduction

The renormalization group can be considered the most powerful method of investigation
of critical and scaling behaviour. However, it produces results in a form of the sum of
some, usually asymptotic, expansion (e.g. 4 − ε) and only a few first terms are known
analytically. To obtain reliable results different resummation techniques (Borel transformation,
variational approach, Pade approximation and so on) have been developed. Knowledge of
large-order asymptotic behaviour of perturbation series of field-theoretic models is the basis
of the resummation. This behaviour has been investigated with the aid of instanton analysis
which consists of generalizing the saddle-point method for the path integral and applied to the
resummation problem in the prototypical static φ4 model [1]. The instanton approach has been
applied to a set of static quantum-field models and the behaviour of perturbation series for all
essential models (φ2k , QED, QCD, . . . ) has been investigated [1] but similar information for
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dynamic models was not known. Fourth order of perturbation expansion of dynamic critical
indices is in calculation now. Thus, the resummation problem arises here as well and demands
information about the large-order asymptotics in dynamic field theories.

Let us recall the main features of the instanton approach in the example of the static theory
with the action

S = 1

2
∂φ∂φ +

g

4!
φ4, (1)

where φ(x) is the basic field, g is the coupling constant, all necessary integrations in coordinates
(and times in dynamic models) and summation in indices of fields and partial derivatives are
implied here and henceforth.

We shall use the notation X[N] for the Nth order contribution to the perturbation expansion
in some parameter of an arbitrary quantity X. The large-order asymptote for the expansion in
g of the k-point correlation function in model (1) can be determined using the expression

G
[N]
k (x1 . . . xk) = 1

2π i

∮
dg

g

∫
Dφφ(x1) . . . φ(xk) e−S−N lg g∫

Dφ e−S
(2)

based on the Cauchy residue theorem. The instanton approach is the steepest-descent
calculation of integrals in φ and g in expression (2) at large N. This leads to the stationarity
equations

δS

δφ
= 0 ⇒ −�φ +

g

6
φ3 = 0,

(3)

−∂S

∂g
= N

g
⇒ g

4!

∫
dx φ4(x) = −N.

The stationary solution (instanton) was found in space dimension d = 4 in [2]

φst =
√

3N

πy(x − x0)2/y2 + 1
, gst = 1

16π2

with arbitrary x0, y. To deal with this arbitrariness the Faddeev–Popov unit decomposition

1 =
∫

dDx0

∫ +∞

−∞
d ln y2δ

[
− g

24

∫
dx φ4(x) ln

(
x − x0

y

)2
]

× δD

[
− g

24

∫
dx φ4(x)(x − x0)

] [
− g

24

∫
dx φ4(x)

]D+1

was used [2].
As a result it was concluded that the large-order asymptote for an arbitrary quantity F has

the form

F [N] = N !CaNNb,

where the constant a does not depend on the quantity F, in contrast with the constant b and
the constant or function C.

In this paper, results of investigation of large-order asymptotes in dynamic models are
reviewed and summarized. This paper is organized as follows. The general form of Langevin
equations, the MSR formalism, models with Gibbsian static limit and the Kraichnan model of
turbulent advection of passive scalar are described in section 2. The existence (non-existence)
of the instanton in the dynamic models is discussed in section 3. Instanton solutions for
dynamic models from A to H are presented in section 4. Instanton solution for the Kraichnan
model is outlined in section 5. Section 6 contains conclusions.
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2. Dynamic field theory

Considering the dynamic theory we mean the model based on the Langevin equation

∂ϕ

∂t
+ V (ϕ) = ξ, ϕ(t0) = 0,

where ϕ is a basic field or a set of fields, V (ϕ) contains an interaction, ξ is a Gaussian random
field with the known correlator

〈ξ(t, x)ξ(t ′, x′)〉 = D(x − x′, t − t ′).

The explicit form of the function D depends on the model considered.
This problem can be formulated as a quantum-field model using the MSR formalism [3].

In this case, the correlation and response functions can be written as∫
DϕDϕ′ det Mϕ(x1, t1) . . . ϕ′(xk, tk) e−S∫

DϕDϕ′ det M0 e−S0
, (4)

where the dynamic action has the form

S = 1
2ϕ′Dϕ′ + ϕ′(∂tϕ + V (ϕ)),

and the operator M is defined as

M = ∂

∂t
+

δV

δϕ
.

S0 and M0 in (4) are free parts of the dynamic action S and the operator M respectively.
An example of a dynamic model is the Kraichnan model. The advection of the passive

scalar field ϕ(x, t) is described by the stochastic equation

∂ϕ

∂t
− ν�ϕ + g∂i(viϕ) = ξ(x, t), (5)

where the force ξ and the velocity field v(x, t) are Gaussian random fields with the correlators
Dξ, Dv , the latter one being δ correlated in time and correspond to the theory of developed
turbulence [4].

The other examples of a dynamic theory are the standard models of equilibrium critical
dynamics, i.e. models with Gibbsian static limit. They may be described by the Langevin
equation

∂ϕa

∂t
+ (αab + βab)

δS

δϕb

= ξa. (6)

Here ϕa is a set of fields, index a characterizes the field type, the matrix α can contain a linear
differential operator in coordinates and the matrix β can depend on fields. ξa is a Gaussian
random field with the following correlator:

〈ξa(t, x)ξb(t
′, x′)〉 = 2αabδ(t − t ′)δ(x − x′).

The notation of [5] has been used here. To maintain the fluctuation–dissipation theorem the
parameters of (6) obey the conditions

α� = α, β� = −β,
δβab

δϕb

= 0.

The static action S contains as a contribution the action of the massless φ4 model (1).
Thus, the dynamic action for models A–H has the form

S = −ϕ′αϕ′ + ϕ′
[
∂ϕ

∂t
+ (α + β)

δS

δϕ

]
. (7)
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Let us list the static actions S and the parameters α and β for models A–H:
Model A:

S = 1

2
∇φ∇φ +

g

4!
φ4, α = D/2,

where the correlator D is a constant.
Model B:

S = 1

2
∇φ∇φ +

g

4!
φ4, α = −λ∇2,

where λ is a constant.
Model C:

S = 1

2
(∇φ)2 +

g

4!
φ4 +

m2

2
+

1

2
v2mφ2, α =

(
 0
0 −λ∇2

)
,

where m is an additional scalar field; , λ are constants; v2 is an additional coupling constant.
Model D:

S = 1

2
(∇φ)2 +

g

4!
φ4 +

m2

2
+

1

2
v2mφ2, α =

(−λ∇2 0
0 −λ1∇2

)
,

where λ and λ1 are constants.
Model F:

S = |∇ψ |2 +
g

6
|ψ |4 +

m2

2
+ v2m|ψ |2,

α =
 0 λψ 0

λψ 0 0
0 0 −λm∇2

 , β =
 0 iv3 iv4ψ

−iv3 0 −iv4ψ
∗

−iv4ψ
∗ iv4ψ 0

 ,

where ψ is a complex-valued field; λψ, λm are constants; vi (i = 2, 3, 4) are additional
coupling constants.

Model E is F model with v2 = v3 = 0.
Model G: There are two real vector fields forming the field ϕ by prescription: ϕa = φa

and ϕ3+a = ma , where a = 1, 2, 3. Then

S = 1

2
(∇φ)2 +

g

4!
φ4 +

m2

2
, α =

(
λφ 0
0 −λm∇2

)
,

βab = 0, βa3+b = v2εabcφc, β3+a3+b = v2εabcmc,

a, b, c = 1, 2, 3.

Model H:

S = 1

2
(∇φ)2 +

g

4!
φ4 +

c

2
v2

⊥,

α =
(−λφ∇2 0

0 −λv∇2

)
, β =

(
0 v2

−→∇ φ

−v2
←−∇ φ 0

)
,

where the transverse projection operator for the vector field v is implied; λψ, λm, v2 are
constants.

3. Existence of an instanton

A natural question to ask is why the problem of large-order asymptotes was not solved earlier in
dynamic models? The difficulty lies in establishing the existence of a solution of a stationarity
equation similar to (3) of the static case. No general theorem is known about the existence of



Large-order asymptotes for dynamic models 7819

a global solution of the corresponding nonlinear partial differential equation. However, in [6]
an approach was proposed to prove the non-existence of a solution of the stationarity equation.
It is based on the use of scaling properties of the model. Let us illustrate this approach in the
example of the dynamic model A.

The dynamic action has the form

S = −1

2
φ′Dφ′ + φ′

[
∂φ

∂t
+

D

2

(
−∇2φ +

g

6
φ3
)]

.

Hence, the stationarity equations are of the form

δS

δφ′ = 0 ⇒ −Dφ′ +
∂φ

∂t
+

D

2

[
−∇2φ +

g

6
φ3
]

= 0,

δS

δφ
= 0 ⇒ −∂φ

∂t
+

D

2

[
−∇2φ′ +

g

2
φ2φ′

]
= 0.

To answer the question ‘does the non-zero solution exist?’ let us

(i) consider the obvious equations∫
dx dtφ′ δS

δφ′ = 0,

∫
dx dtφ

δS

δφ
= 0,

(ii) change variables φ(t, x) → φ(λ′t, λx)

then S = S(λ′, λ) and we have two additional scaling equations λ∂λS|λ,λ′=1 = 0,

λ′∂λ′S|λ,λ′=1 = 0.
For decrease in space and time fields we then obtain a system of equations for the

functionals F1 = ∫
dx dt (φ′)2, F2 = ∫

dx dtφ′∂tφ, F3 = ∫
dx dtφ′∇2φ, F4 = ∫

dx dtφ′φ3

contributing to the dynamic action in the form

−DF1 + F2 − D

2
F3 +

Dg

12
F4 = 0, F2 − D

2
F3 +

Dg

4
F4 = 0,

−dD

2
F1 + dF2 − (d − 2)

D

2
F3 +

dDg

12
F4 = 0, −D

2
F1 − D

2
F3 +

Dg

12
F4 = 0.

It can be proved that these equations have no non-zero solution. Thus, a non-trivial solution of
the stationarity equations in dynamic models does not exist in the class of functions decreasing
at t → ±∞.

4. Instanton analysis of models A–H

When there is no stationarity point in the steepest-descent calculation of a numeric integral the
boundary contribution becomes essential. But what is the boundary of the functional space in
a path integral? Our statement is that in instanton analysis for the near-equilibrium dynamic
models the necessary boundary contribution is produced by functions which do not decrease
in the limit t → +∞.

Let us illustrate this statement by considering the steepest-descent calculation of the
parametric and path integral

1

2π i

∮
dg

g

∫
DϕDϕ′ det Mϕ . . . ϕ′ e−S−N ln g∫

DϕDϕ′ det M0 e−S0
.
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The stationarity equations are

−∂ϕ′

∂t
+ ϕ′ (α + β)

δ2S

δϕδϕ
+ ϕ′ δβ

δϕ

δS

δϕ
= 0, (8)

−2αϕ′ +
∂ϕ

∂t
+ (α + β)

δS

δϕ
= 0. (9)

Consider the finite time interval t ∈ [t0, T ], then an additional condition

ϕ′(T , x) = 0 (10)

appears.
We note that the dynamic instanton ϕd is, in particular, a non-trivial solution of the

equation

−∂ϕ

∂t
+ (α − β)

δS

δϕ
= 0. (11)

Thus, we can consider just one first order in time differential equation (11) instead of the two
equations (8) and (9).

To explain the choice of equation (11), let us consider the asymptotic behaviour of its
solution at t → ±∞. The stationarity equation (11) has two rather obvious time-independent
solutions: ϕ = 0 and the static instanton ϕst. For the trivial solution δ2S0/δϕ

2 is a positive
definite operator. For the stationary instanton the operator

(
δ2S0/δϕ

2 − |g|ϕ2
st

/
2
)

has at
least one negative eigenvalue [1] which determines the direction along which the solution
approaches the stationary instanton at t → ∞. Hence, the dynamic instanton behaves as

lim
t→−∞ ϕd = 0, lim

t→∞ ϕd = ϕst,

which is consistent with the Gibbsian limit of the dynamic model.
Let us discuss the existence of the solution of equation (11). The analysis mentioned in

section 3 is not applicable here because of the absence of the decrease of ϕd at large times.
But an interesting similar argument can be put forward. Relation (11) for model A has the
form

∂φ

∂t
− D

2

(
−∇2φ +

g

6
φ3
)

= 0.

Consider now the equation

∂

∂t

∫
dx φ2 = D

(∫
dx∇φ∇φ +

g

6

∫
dx φ4

)
. (12)

For small φ (e.g. at t → −∞) the right-hand side of this equation is positive which ensures
growth of

∫
dx φ2 with increasing time. We are interested in the case of negative g. The

right-hand side of (12) is equal to zero on the stationary instanton φst. Therefore, the solution
φd tends to φst, when t → ∞ at least in a weak sense in a L2 space (some measure in

∫
dx in

(12) to ensure the convergence of the integrals large distances is implied). Note that for the
negative right-hand side of (12) decrease of

∫
dx φ2 with the time growth follows. In such a

case there is no solution with a zero initial condition.
Relation (12) together with the asymptotic analysis presented above are the arguments in

favour of the existence of a solution of (11).
As a solution of the basic equation (11), it was proposed in [7, 8] to construct the

usual tree-graph solution of the nonlinear equation with the given final Cauchy condition
ϕd(T , x) = ϕst(x) and the tree-graph expansion kernel

1

[4π(T − t)]d/2
exp

[
− (x − x′)2

4(T − t)

]
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(for model A). Obviously, the tree-graph expansion is convergent with a finite radius of
convergence.

Using equation (11) it is simple to express the stationary solution ϕ′
d via ϕd :

ϕ′
d = δS

δϕ
= (α−1)

(
∂ϕ

∂t
+ β

δS

δϕ

)
.

As in the static model (1), equations (8)–(10) have a non-trivial solution with negative g only.
Note that the integrals in the dynamic action (7) converge, the large-time decrease of the

integrand is ensured by the ϕ′ field. It can be proved [7, 8] that the dynamic action on the
dynamic instanton solution asymptotically (the initial time instant t0 → −∞) coincides with
the static action on the static instanton

S(ϕd, ϕ
′
d) = S(ϕst),

and equation ∂gS = N leads to gd = gst.
Thus, the exponential factor in our steepest-descent analysis of the dynamic Green function

(2) as well as the pre-exponential factor asymptotically is the same as in the corresponding
equilibrium static problem. Moreover, the fluctuation determinant∫

DδϕDδϕ′det M e−(δ2S/δ{ϕ,ϕ′}2)δ{ϕ,ϕ′}2∫
DϕDϕ′det M0 e−S0

was also calculated and it was shown that it coincides with the static one as well [7, 8].
Thus, we conclude that the asymptotic properties of the dynamic model at the leading

order in N are determined by the static instanton solution which leads to the factorial growth
of the large-order contributions as in the static instanton analysis. Therefore, the large-order
behaviour of an arbitrary quantity F (correlation or response function or critical index) may
be expressed as

F [N] = CN !aN
MNb, (13)

where F [N] is the N th order contribution to F of the expansion in the parameter e (e is
the coupling constant g or the dimensional regularization parameter ε). The most essential
for resummation schemes constants aM in expression (13) have been determined [7, 8] for
all near-equilibrium models (A–H). The exponent b in the ε-expansion contribution to the
dynamic index z in the O(n) symmetric dynamic theories with Gibbsian static limits was
determined as

b = 3 +
n

2
.

Properties of the response functions and dynamic parts of the correlation functions were
discussed in [7, 8] as well.

5. Instanton solutions for Kraichnan model

In the case of the Kraichnan model (5), we have not found the main boundary contribution in
the steepest-descent calculation. The reason lies in the Gaussian character of the integration
in the fields ϕ, ϕ′ in the model. However, a change of variables suitable for the use of the
instanton analysis, namely the Lagrangian variables approach, was proposed in [9].

Let us recall the main features of the Lagrangian variables approach in the field-theoretic
model of the type considered. For an arbitrary v field, the Green function G(x,s;y,t;[v])
corresponding to (5) obviously satisfies

(∂s − ν0�)G(x, s; y, t) + g∂i(vi(x, s)G(x, s; y, t; [v])) = δ(x − y)δ(s − t).
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We can eliminate the δ-functions on the right-hand side by the use of the following auxiliary
quantity:

G(x, s; y, t; [v]) = θ(s − t)P (x, s; y, t; [v]).

This yields

(∂s − ν0�x)P (x, s; y, t; [v]) + g∂(v(x, s)P (x, s; y, t; [v])) = 0

P(x, s = t; y, t; [v]) ≡ δd(x − y).

The last system of equations may be considered as a Fokker–Plank equation of some
different models with P(x, s; [v]) being a simultaneous distribution function. A term-by-
term comparison allows us to reconstruct this model and to write down the solution for
P(x, s; y, t; [v]) explicitly:

P(x, s; y, t; [v]) = 〈δd(x − X(s))〉ζ (14)

∂sX(s) = −gv(X(s), s) + ζ(s)

X|s=t = y, Dζ = 2ν0,
(15)

where 〈· · ·〉ζ denotes an average over the auxiliary random Gaussian force ζ (Dζ being its
correlator). Equations (14) and (15) describe particle motion in a random force field ζ . We
see that the problem reduces to the study of interacting particles moving in a random medium,
since all the quantities in the Kraichnan model can be expressed via the Green function
G(x, s; y, t) in the random field v. The medium is inhomogeneous: thus, (15) would be
exactly the equation for the ordinary Brownian motion were there not the term containing the
velocity field with the explicit dependence on the particle position.

Let us insert in (14) an additional path integration over an auxiliary field c(s) having in
the integrand the Dirac δF function with respect to the field variable c:

P(x, s; y, t; [v]) =
〈∫

DcδF (c(s) − X(s))δd(c(s) − x)

〉
ζ

(16)

and use the infinite-dimensional analogue of the well-known finite dimensional identity for
the δ-function:

δF (c(s) − X(s)) = det

(
∂s + g

δv
δc

)
δF (∂sc + gv(c, s) − ζ ).

Then the d-dimensional δd -function in (16) can be transformed into the boundary condition
for c(s):

P(x, s; y, t; [v]) =
〈 ∫ c(s)=x

c(t)=y
Dc det

(
∂s + g

δv
δc

)
δF (∂sc + gv(c, s) − ζ )

〉
ζ

.

Converting the δF -function to the Fourier-like path-integral form we obtain

P(x, s; y, t; [v]) = M

∫ c(s)=x

c(t)=y
DcDc′ det

(
∂s + g

δv
δc

)
exp(−νc′2 + ic′ċ + igc′v(c, τ )).

Here, the sum over the vector indices of c(τ ), c′(τ ) and v(c, τ ) fields as well as the integration
over the field arguments is implied. Henceforth, ċ denotes ∂c(τ )/∂τ , and M is a normalization
factor which appeared due to a functional determinant of the last δF -function transformation.
This field theory coincides exactly with the standard MSR formalism. This is proved by
comparison of the diagrammatic expansions using the proper regularization of the appearing
functional determinants. The regularized det(∂s + gδv/δc) can be considered as a constant
independent of the fields v, c, like in the usual MSR formalism [10], and it can be included
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in the factor M. Thereupon M is determined by the free theory (at g = 0) and is restored by
comparison with it:

〈ϕ(x, t0)ϕ
′(y, t)〉

∣∣∣∣∣
g=0

= M

∫ c(t0)=x

c(t)=y
DcDc′ exp

(−νc′2 + ic′ċ
)

= 1

(4πνT )d/2 exp

(
− (x − y)2

4νT

)
, T ≡ t0 − t.

The objects of investigation in the Kraichnan model are the single-time structure functions:

〈[ϕ(t, x) − ϕ(t, x′)]n〉,
whose long-range behaviour is determined by the properties of the composite operators ϕn

[10]. To investigate renormalization of these operators using Lagrangian variables, consider
the theory with the action

S = N

ν

n∑
i=1

c′
i
2 − i

n∑
i=1

c′
i ċi +

gν

2

∑
i �=j

c′
iD(ci − cj )c′

j

 ,

where ci is the position of the ith ‘liquid particle’ and c′
i its momentum, D is a random velocity

correlator and g is a coupling constant.
The stationarity equations in these variables have a form

−iċ′
m = uη

∑
l

l �=m

c′
m

∂D(cm − cl )

∂(cm − cl )
c′
l ,

iċm = uη
∑

l
l �=m

D(cm − cl )c′
l + 2ηc′

m.

These equations have the solution

p(τ ) = iq̇(τ )

2ν − gνDv(q(τ ))
, q̇(τ ) = I1(x)

T

√
2ν − gνDv(q(τ )),

I1(x) =
∫ x

0

dz√
2ν − gνDv(z)

,

[9] where p = c′
1 − c′

2, q = c1 − c2 , which were applied to the problem of investigation of
the large-order asymptotes in the Kraichnan model.

As a result, for the ε expansion of anomalous dimensions of the composite operators
(see [10])

γϕn =
∑
N�0

γ (N)
ϕn

εN ,

the large-order asymptote was obtained [11] in the form

γ
(N)
ϕn ∼

[ −2α

(d − 1 + α)

]N

,

which determines the radius of convergence of the ε expansion

εc = −d − 1 + α

2α
.
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This information was used [11] for resummation of the γϕn series: we extract the singularity
of the expansion adopting the simple rational representation

γϕn =
∞∑

k=1

γ
(k)
ϕn εk =

∞∑
k=1

γ̃
(k)
ϕn εk

ε − εc

.

The results obtained were confirmed by comparison with the exact solution for the composite
operator φ2 [10].

6. Conclusions

The large-order asymptotic analysis of perturbation expansions in dynamic models is more
difficult problem than in static models, mainly because of the absence of a solution of the
stationarity equation in the natural function class. Nevertheless, the instanton method is
applicable here after the appropriate choice of the function class (with non-trivial boundary
conditions) in the case of the near-equilibrium models of critical dynamics or after the choice
of functional variables with a non-trivial behaviour at the boundary in the case of the Kraichnan
model.

The results of the large-order asymptotic analysis in dynamic models demonstrate a great
variety compared with statics. It seems that the general situation in the dynamic models is the
factorial growth of the large-order coefficients of the perturbation expansion. Nevertheless,
convergent perturbation series in nonlinear dynamic models is also possible, as in the Kraichnan
model.
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